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Abstract

The process of freeze coating of a binary substance on a continuous moving plate is investigated theoretically. A

comprehensive model describing the momentum, heat, and mass transport in the freeze-coating system has been de-

veloped that accounts for the coupling between the macroscopic and microscopic aspects of the process. The problem is

formulated using the single-domain approach and the governing equations are solved by the finite difference method.

Effects of various controlling parameters on the freeze-coat thickness and the macrosegregation pattern have been

determined. It is found that macrosegregation could be important in the freeze-coating process. As the distance from

the surface of the plate is increased, the solid species concentration considerably decreases, reaching a minimum value

and rising toward the ambient concentration. The macrosegregation pattern appears to be most sensitive to the

equilibrium partition ratio. As the latter is increased, the difference between the solid and liquid species concentrations

tends to decrease, leading to a substantial reduction of macrosegregation within the freeze coat.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the past two decades or so, the process of freeze

coating of a molten substance on a continuously moving

object have been studied quite extensively by a number

of researchers [1–11]. When the coating material is made

of a pure substance [1–6], the interface between the liq-

uid and solid phases can be assumed sharp and iso-

thermal. On the other hand, when the coating material is

a binary substance [7–11], a two-phase mushy region

would develop in the freeze-coating system. In addition

to the moving boundaries, the coupling between the

macroscopic and microscopic features of the process in

the mushy region renders the problem rather compli-

cated and difficult to solve.

Stevens and Poulikakos [7] studied the process of

freeze coating in which convection in the two-phase

mushy region is assumed negligible. Zhang et al. [8]

utilized a continuum model developed by Bennon and

Incropera [9] to analyze the hot-dip coating process

where a metal rod was pulled vertically through a mol-

ten bath. The effect of the bath geometry was taken into

account. Tangthieng et al. [10] studied the freeze-coating

process where the plate is assumed semi-infinite in thick-

ness. The two-phase mushy region is treated as an arti-

ficial fluid with a high viscosity. Later, Tangthieng et al.

[11] extended their work by relaxing the semi-infinite

plate assumption to investigate the growth-and-decay

behavior of the freeze coat on a moving plate having a

finite thickness. Effects of various controlling parameters

of the system on the maximum freeze-coat thickness and

the corresponding axial location were determined. In

all of the above studies, however, the concentration

field was assumed uniform throughout the system.

The solute transport was not considered. Moreover,
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macrosegregation in the freeze-coat layer was not seri-

ously studied. Also the coupling between the macro-

scopic and microscopic aspects of the process was

ignored.

In recent years, many mathematical models have

been developed to predict macrosegregation during so-

lidification process by considering the solute transport

[9,12–14]. The single-domain approach, which facilitates

Nomenclature

a� solid fraction ratio

Ad effective interfacial area between equiaxed

grains and interdendritic liquid

cdrag unified drag term of the momentum equa-

tion (1/m2)

cp specific heat (J/(kg-K))

C species concentration

CD drag coefficient

CPO dendritic porosity correction factor

CSH non-spherical dendrites correction factor

d a half of plate�s thickness (m)

de envelope volume-equivalent dendrite dia-

meter (m)

de;p envelope volume-equivalent dendrite dia-

meter at the packing limit (m)

D‘ mass diffusivity coefficient (m2/s)

DHm latent heat of fusion (J/kg)

k thermal conductivity (W/(m-K))

K permeability of the dendritic structure (m2)

Kp permeability at the packing limit (m2)

Le Lewis number, Eq. (35)

m1 slope of the solidus line (K)

m2 slope of the liquidus line (K)

Mdrag drag force per unit volume (N/m3)

n grain density or number of particles per unit

volume (1/m3)

Pr Prandtl number

Rcap freeze-coat-to-wall heat capacity ratio

Rdep departed-diameter-to-plate-thickness ratio

Rk freeze-coat-to-wall thermal conductivity

ratio

Rsub wall subcooling parameter

Rsup liquid superheating parameter

Rk dendrite-spacing-to-plate-thickness ratio

Rede Reynolds number based on the envelope

volume-equivalent diameter

Ste Stefan number

T temperature (K)

To inlet plate temperature (K)

T1 solidus temperature (K)

T2 liquidus temperature (K)

Tmax melting temperature of pure species A (K)

U axial velocity (m/s)

U dimensionless axial velocity

Uo plate velocity (m/s)

v vertical velocity (m/s)

V dimensionless vertical velocity

x Cartesian coordinate in axial direction (m)

y Cartesian coordinate in vertical direction

(m)

Greek symbols

a thermal diffusivity (m2/s)

be normalized radius based on de
c interfacial mass transfer rate due to phase

change (kg/(s-m3))

d1 thickness of freeze coat or vertical distance

corresponding to the solidus isotherm (m)

d2 vertical distance corresponding to the liqui-

dus isotherm (m)

D1 dimensionless thickness of freeze coat or

vertical dimensionless distance correspond-

ing to the solidus isotherm

D2 vertical dimensionless distance correspond-

ing to the liquidus isotherm

Dp vertical dimensionless distance correspond-

ing to the packing limit isotherm

e‘ liquid volume fraction

es solid volume fraction

es;p packing limit fraction

g dimensionless coordinate in vertical direc-

tion

j equilibrium partition ratio

k1 primary arm spacing (m)

k2 secondary arm spacing (m)

l‘ dynamics viscosity (kg/(m-s))

t‘ kinematics viscosity (m2/s)

q density (kg/m3)

h dimensionless temperature

X stretching factor used for the separate-phase

flow model

n dimensionless coordinate in axial direction

w dimensionless concentration

we sphericity of the dendrite envelope

Subscripts

c liquid phase of the coating material region

eq at equilibrium

max maximum value

min minimum value

mix mixture between the liquid and solid phases

s solid phase of the coating material region

w wall region

1 at ambient condition
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the numerical algorithm by eliminating the complexity

of tracking nodes located at the moving interfaces, has

been successfully applied to the transport equations.

More sophisticated models have also been developed

that take into account the microscopic features [15–22].

Most of the single-domain models [12–22], however,

are restricted to solidification under the influence of

natural convection. Very little studies of macrosegrega-

tion have been performed under forced-convective con-

ditions. The only relevant works are by Kuznetsov

[23,24]. In Ref. [23], a strip casting process was studied

in which the alloy melt flowed and solidified over a

chilled plate. A full set of momentum, energy, and solute

transport equations were employed to describe the flow

field, heat transfer, and macrosegregation in the system.

Later, Kuznetsov [24] extended his work by examining

the effects of the change of the cooling rates and the

casting speeds on the macrosegregation pattern in the

solidified strip.

In the present study, the process of freeze coating of

a binary substance on a continuous moving plate is

investigated using the single-domain approach. A

comprehensive model that properly accounts for the

momentum, heat, and species transport in the freeze-

coating system, is developed from first principles. Sup-

plementary models, associated with the microscopic

aspects, are also incorporated into the macroscopic

equations. The system of equations governing the freeze-

coating process is numerically solved by employing the

fully implicit finite difference method. The variations of

the freeze-coat thickness and the macrosegregation

pattern in the freeze coat are determined as functions of

various controlling parameters of the system.

2. Problem formulation

A graphical representation of the freeze-coating sys-

tem under consideration is depicted in Fig. 1. A chilled

plate having a finite thickness of 2d at a uniform tem-

perature To is continuously fed at a constant speed Uo

through a liquid bath filled with a binary alloy melt. The

ambient liquid temperature and concentration have

constant values of T1 and C1, respectively. Because the

local composition can deviate from C1, the local solidus

and liquidus temperatures (i.e., T1 and T2, respectively)
also differ from the solidus and liquidus temperature

evaluated at C1 (i.e., T11 and T21, respectively). When

To is lower than T1, a thin solidified layer, namely a

freeze coat, would form on the surface of the plate. The

freeze-coat thickness d1 and the liquidus point d2 cor-

respond to the isothermal contours of T1 and T2, re-

spectively.

The region located between d1 and d2 is the two-

phase mushy region. In this study, the two-phase mushy

region is divided into two regions based on the dendritic

configuration as shown in Fig. 2. When the solid frac-

tion is higher than a certain limit, namely the packing

limit fraction es;p, the solid phase is packed together and

acts as if it were a porous medium, with the interden-

dritic liquid flowing through it. This region is referred to

as the two-phase packing region where the solid struc-

ture grows from the solidus interface in the form of

columns, namely, columnar dendrites. In the freeze-

coating system, because heat is extracted from the warm

melt to the chilled plate, the dendrites will grow in the

direction opposite to that of heat transfer, which is

perpendicular to the main flow.

On the other hand, if the solid fraction is less than the

packing limit fraction, the dendrites begin to break away

and disperse into the surrounding liquid. Note that in a

forced convection system, the main flow may cause the

dendrites to break off [25]. These broken particles,

namely the equiaxed dendrites, may grow independently

in the radical direction through the surrounding under-

cooled liquid. This region is referred to as the two-phase

dispersed region.

Fig. 1. Schematic of the freeze-coating system under consider-

ation.

Fig. 2. Graphical representation of the two-phase mushy re-

gion consisting of the packing and dispersed regions.
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The equations governing the freeze-coating system

can be derived by applying the volume average theorem

over a representative elemental volume or REV [13]. By

utilizing the single-domain concept, the transport

equations are valid throughout the entire coating ma-

terial region, which physically consists of the freeze coat,

the two-phase mushy, and the binary melt regions.

Transition between the single-phase and the two-phase

regions is implicitly resolved by the representation of

variables as a function of the solid fraction. On the other

hand, the moving plate is treated as a separate region,

namely the wall region. To formulate the governing

equations, the following assumptions are made:

iiii(i) The system is steady and two-dimensional.

iii(ii) The flow is laminar. It should be noted that tran-

sition to turbulence may cause a sudden reduction

of the freeze-coat thickness, which is not desirable

as it has a severe negative impact on the final prod-

uct [26].

ii(iii) The boundary layer approximation is valid. As a

result, the governing equations are parabolic.

ii(iv) The physical properties of each phase are con-

stant. To minimize the number of parameters,

the density, the thermal conductivity, and the spe-

cific heat of both phases are assumed identical.

iii(v) The liquid phase in the mushy region behaves like

a Newtonian fluid.

ii(vi) The velocity of the solid phase in the two-phase

mushy region, us, can be expressed by the follow-

ing asymptotic model:

us ¼ ð1� a�Þuc þ a�Uo ð1Þ

vs ¼ ð1� a�Þvc ð2Þ

where

a� ¼ min 1;
es
es;p

� �
¼

1 if es P es;p
es
es;p

if es < es;p

"
ð3Þ

These equations are referred to as the consolida-

tion factor [27]. It can be seen that us is assured to

behave correctly under two asymptotic cases: if es
is higher than es;p, us is equal to the plate velocity,

corresponding to the velocity of the columnar

structure attached to the freeze coat. If es ap-

proaches zero, us and uc are identical. For an in-

termediate range of es, i.e., 0 < es < es;p, us is

assumed linearly proportional to uc based on the

value of the local solid fraction.

i(vii) Local thermal equilibrium exists for both the solid

and liquid phases within the REV.

(viii) The effect of microsegregation, i.e., the variations

of the solid and liquid species concentrations with-

in the REV, is negligible. The solid and liquid spe-

cies concentrations are linearly related by

Cs ¼ jCc ð4Þ

where j is equilibrium partition ratio.

ii(ix) There is no diffusion in the solid phase. The species

diffusivity for the solid phase is approximately a

thousand times smaller than that of the liquid

phase.

iii(x) The dispersive flux terms, originated from the vol-

ume average procedure, are assumed negligible.

2.1. Governing equations

With the aforementioned assumptions, the governing

equations and associated boundary conditions of the

freeze-coating system can be written as follows:

i(i) Wall region (xP 0 and �d 6 y6 0)

qwcpwUo
oTw
ox

¼ kw
o2Tw
oy2

ð5Þ

x ¼ 0 : Tw ¼ To ð6aÞ

y ¼ 0 : Tw ¼ Tc and kw
oTw
oy

¼ kc
oTc
oy

ð6bÞ

y ¼ �d : kw
oTw
oy

¼ 0 ð6cÞ

(ii) Coating material region (xP 0 and 06 y61)

o

ox
½ð1� esa�Þuc þ esa�Uo	 þ

o

oy
½ð1� esa�Þvc	 ¼ 0

ð7Þ

ð1� esÞqcuc
ouc
ox

þ ð1� esÞqcvc
ouc
oy

¼ l‘ð1� esÞ
o2uc
oy2

þ l‘ð1� a�Þ oes
oy

ouc
oy

þ l‘ðUo � ucÞ
oa�

oy
oes
oy

þ l‘a
�ðUo � ucÞ

o2es
oy2

þ a�ðUo � ucÞc þMdrag ð8Þ

qccpc½ð1� esa�Þuc þ esa�Uo	
oTc
ox

þ qccpc½ð1� esa�Þvc	
oTc
oy

þ DHmc ¼ kc
o2Tc
oy2

ð9Þ

qc½ð1� esÞuc þ esð1� a�Þjuc þ esa�jUo	
oCc

ox

þ qc½ð1� esÞvc þ esð1� a�Þjvc	
oCc

oy
þ ð1� jÞCcc

¼ qcD‘ð1� esÞ
o2Cc

oy2
� qcD‘

oes
oy

oCc

oy
ð10Þ

x ¼ 0 : uc ¼ 0; Tc ¼ T1; and Cc ¼ C1 ð11aÞ
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y ¼ 0 : uc ¼ Uo; vc ¼ 0; Tc ¼ Tw;

kc
oTc
oy

¼ kw
oTw
oy

; and Cc ¼ Ccð0Þ ð11bÞ

y ! 1 : uc ¼ 0; Tc ¼ T1; and Cc ¼ C1 ð11cÞ

A detailed derivation of the above equations can be

found in Ref. [28]. Eq. (5) is the heat conduction equa-

tion for the wall region. Eqs. (7), (9) and (10) represent

the mixture form of the continuity, energy, and species

equations for the coating material region whereas Eq.

(8) is the momentum equation for the liquid phase alone.

The velocity of the solid phase in the two-phase dis-

persed region is given by Eqs. (1) and (2) according to

assumption (vi) whereas in the freeze coat and the two-

phase packing regions, the solid velocity is the same

as the moving plate velocity. In general, the mixture

equations can be derived by adding the governing

equations for the liquid and solid phases together. A

major advantage of the mixture equations is the absence

of the interfacial transfer terms, which leads to a less

complicate form of the equations themselves. However,

should the microscopic aspects be included, these inter-

facial transfer terms must appear in the governing

equations because they play a key role to link the mi-

croscopic quantities to the macroscopic equations.

The term c, appearing in Eqs. (8)–(10), is the inter-

facial mass transfer due to phase change, which is given

by

c ¼ o

ox
ðe‘qcucÞ þ

o

oy
ðe‘qcvcÞ

¼ o

ox
½ð1� esÞqcuc	 þ

o

oy
½ð1� esÞqcvc	 ð12Þ

Physically, c represents the amount of liquid phase

within the REV, which transforms to the solid phase.

The value of c is negative during the freezing process

because the amount of liquid phase within the REV

decreases. In contrast, it is positive when remelting oc-

curs and zero for the pure liquid and pure solid regions

in which phase change does not take place. In the mo-

mentum equation, the fifth term on the right-hand side

of Eq. (8) is a combination of the interfacial momentum

transfer due to phase change and the inertia terms,

which can be written in terms of c. In the energy and

species equations (Eqs. (9) and (10)), the terms con-

taining c, are the energy source term (i.e., the latent heat

effect) and the species source term, respectively.

The second and third terms on the right-hand side of

Eq. (8) are the terms originated from the consolidation

factor (Eqs. (1) and (2)), which only appears in the two-

phase dispersed region. The fourth term on the right-

hand side of Eq. (8) is a combination of the viscous term

and the effect of the consolidation factor. The sixth term

on the right-hand side of Eq. (8) is the interfacial stress

transfer, which is discussed next.

2.2. Supplementary equations

The termMdrag appearing in the last term of the right-

hand side of Eq. (8) represents the interfacial drag force

(per unit volume) between the liquid and solid phases

within the REV. For the two-phase packing region,

Mdrag can be modeled by analogy with the Darcy law,

which have been reported by many researchers [9,19,20].

The value of Mdrag for this region is given by [13]

Mdrag ¼
e2‘l‘

K
ðUo � ucÞ ð13Þ

where K is the permeability of the packed structure. In

the freeze-coating process, the direction of the main flow

is perpendicular to the primary dendrite arm. Thus the

permeability of the columnar dendrite under this flow

arrangement is given by [29]

K ¼ 1:73� 10�3 k1

k2

� �1:09

k2
2

e3‘
ð1� e‘Þ0:749

ð14Þ

where k1 and k2 are the primary and secondary dendrite

arm spacing, respectively.

For the two-phase dispersed region, Mdrag can be

modeled in analogy with the drag force from flow over

an object:

Mdrag ¼
1

2

qcAdCD

Vo
jus � ucjðus � ucÞ ð15Þ

where CD is the drag coefficient [30,31]. Due to the ir-

regular shape of the equiaxed grains, a concept of den-

drite envelope [32], is utilized by creating a solid sphere,

which has the same volume as the dendrite. Because an

average size of the equiaxed particles is on the order of

10�4 to 10�5 m, the flow over a dendrite-volume-equiv-

alent sphere will be in the Stokes regime. Hence, the drag

coefficient can be written as

CD ¼ 24

Rede

CPO

CSH

ð16Þ

where Rede is the Reynolds number based on the enve-

lope volume-equivalent diameter, de, which can be writ-

ten as

Rede ¼
qcjus � ucjde

l‘

ð17Þ

In Eq. (16), CSH and CPO represent the correction fac-

tors, which account for the effects of non-spherical shape

and the porosity of the dendrite, respectively. The cor-

relation for CSH is given by

CSH ¼ 1:2376 log10
we

0:1556

� �
ð18Þ
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where we is the envelope sphericity. For simplicity, we is

assumed to be unity for the freeze-coating process. As a

result, the value CSH from the above equation is also

equal to unity. On the other hand, the correlation for

CPO is given by

CPO ¼
2b2

e 1� tanhðbeÞ
be

� �
2b2

e þ 3 1� tanhðbeÞ
be

� � ð19Þ

where the normalized radius be is defined as

be ¼
de

2
ffiffiffiffiffiffi
Kp

p ð20Þ

Kp is the intrinsic permeability within the dendrite en-

velope. Because an equiaxed dendrite is a broken part of

the columnar structure, it is assumed that the value of

the intrinsic permeability is constant throughout the

dispersed region and is equal to the permeability of the

columnar structure evaluated at the packing limit frac-

tion, i.e., from Eq. (14)

Kp ¼ 1:73� 10�3 k1

k2

� �1:09

k2
2

ð1� es;pÞ3

e0:749s;p

ð21Þ

The envelope volume-equivalent diameter, de is geo-

metrically related to the grain density (or the number of

equiaxed particles per unit volume), n, as follows:

de ¼
6

pn
es
es;p

� �1=3

ð22Þ

In the freeze-coating process, the grain density is as-

sumed constant and treated as a controlling parameter.

By setting es ¼ es;p, the above equation becomes

de;p ¼
6

pn

� �1=3

ð23Þ

where de;p is the envelope volume-equivalent diameter at

the packing limit fraction or the departed diameter.

Substituting Eqs. (16), (17) and (23) into Eq. (15) and

rearranging yields

Mdrag ¼ 18l‘

CPO

CSH

1

de;p

� �2 es
es;p

� �4=3

ðUo � ucÞ ð24Þ

Thus, the unified drag force for both the two-phase

packing and dispersed regions can be written as

Mdrag ¼ l‘cdragðUo � ucÞ ð25Þ

where

cdrag ¼

e0:749s

1:73� 10�3ðk1=k2Þ1:09k2
2ð1� esÞ

ifes P es;p

18
CPO

CSH

1

de;p

� �2 es
es;p

� �4=3

ifes < es;p

2
6664

ð26Þ

2.3. Coupling of the thermal and concentration fields

Only an isomorphous alloy will be considered in this

study as shown in Fig. 3. In the isomorphous region as

represented by the white area of the figure, both con-

stituents of the binary alloy are completely soluble in the

solid and liquid phases without forming of a eutectic

structure. In addition, the solidus and liquidus lines are

assumed straight lines. It follows that the equilibrium

partition ratio, j, defined as j ¼ m2=m1, is also a con-

stant, and the equilibrium solid and liquid species con-

centrations (i.e., Cs;eq and Cc;eq, respectively) are linear

functions of temperature:

Cs;eq ¼
T � Tmax

m1

and Cc;eq ¼
T � Tmax

m2

¼ T � Tmax

jm1

ð27Þ

It should be noted that the liquid species concentra-

tion, Cc calculated from the species equation represent

the non-equilibrium liquid species concentration as a

result of the solute transport. The mixture concentration

is then shifted from its initial value, leading to macro-

segregation during solidification. In the freeze-coating

system, the thermal–solutal process is assumed quasi-

equilibrium. Thus, the value of the shifted mixture

concentration can be expressed by

Cmix ¼ es;eqCs þ e‘;eqCc ¼ es;eqCs þ ð1� es;eqÞCc ð28Þ

where es;eq is the solid fraction calculated from the

equilibrium state, which is given by

es;eq ¼
T21 � T

ðT21 � T Þ þ jðT � T11Þ ð29Þ

Fig. 3. Simplified equilibrium phase diagram.
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The above expression implies that the equilibrium solid

fraction, es;eq is only a function of temperature because

the equilibrium species concentration can be written as a

function of temperature (Eq. (27)). Substituting Eq. (4)

into Eq. (28) yields

Cmix ¼ ½1� ð1� jÞes;eq	Cc ð30Þ

Once the value of the shifted mixture concentration has

been determined, the solid fraction can be updated by

[28]

es ¼
1

1� j
� j

ð1� jÞ2
Cmix

C1

T21 � T11
Tmax � T

ð31Þ

3. Numerical analysis

The governing equations and associated boundary

conditions can be transformed to a set of dimensionless

governing equations by introducing new coordinates

and new dependent variables as follows:

i(i) Wall region

n ¼ xac

Uod2
; gw ¼ y

d
; and hw ¼ Tw � To

T1 � To
ð32Þ

where n > 0, �16 gw 6 0, and 06 hw 6 hwð0Þ.
(ii) Coating material region

n ¼ xac

Uod2
; gc ¼ 1� exp

�
� Xy

d

�

Uc ¼
uc
Uo

; Vc ¼
vcd
ac

;

hc ¼
Tc � To
T1 � To

; and wc ¼
Cc

C1
ð33Þ

where n > 0, 06 gc 6 1, 06Uc 6 1, Vc P 0, hcð0Þ6 hc 6

1, and wc P 0.

A stretching factor, X is introduced in an exponential

fashion to transform a semi-infinite domain in the orig-

inal physical system to a finite domain. The stretching

factor could be a function of n. Consequently, the grid

can be either clustered near the wall or stretched to the

far field as the algorithm marches downstream.

Due to space limitation, the dimensionless governing

equations, which can be found in [28], are not presented

here. Inspection of the governing system indicates that

there are two microscopic and nine macroscopic para-

meters controlling the freeze-coating process. The two

microscopic controlling parameters are the dendrite-

spacing-to-plate-thickness ratio and the departed-

diameter-to-plate-thickness ratio defined as

Rk ¼
k2

d
and Rdep ¼

de;p
d

ð34Þ

The nine macroscopic parameters controlling the freeze-

coating process are

Rk ¼
kc
kw

; Rcap ¼
qccpc
qwcpw

; Rsub ¼
T11 � To
T21 � T11

;

Rsup ¼
T1 � T21
T21 � T11

; Pr ¼ t‘
ac

; Le ¼ ac

D‘

;

Ste ¼ CpcðT21 � T11Þ
DHm

; j ¼ m2

m1

; and es;p ð35Þ

The system of dimensionless governing equations is

solved numerically by employing the finite difference

method. In so doing, the momentum, energy, and spe-

cies equations are first linearized, with the linearized

coefficients at the upstream location being evaluated

using the ‘‘lagging’’-coefficient technique [33,34]. These

equations are then discretized using the fully implicit

scheme resulting in a system of linear algebra, which

have a tridiagonal matrix of coefficients. The Thomas

algorithm is employed to solve for the U -velocity, tem-

perature and concentration fields. The linearized coeffi-

cients are updated by a simple iterative procedure, until

the solution meets the convergence criteria. The pre-

scribed tolerances are set to be 10�9 for the uniform

vector norm of the U -velocity, temperature, and con-

centration solution vectors. To maximize the conver-

gence rate, under-relaxation factors for these three

vectors are set to be 0.7, 0.8, and 0.8, respectively, and it

takes approximately 10 iterations for the solution vec-

tors to converge. For the continuity equation, a super-

ficial V -velocity defined as the product of Vc and (1� es)
is introduced to facilitate numerical computation. The

superficial V -velocity and the interfacial mass transfer

due to phase change can be explicitly determined. The

numerical calculation of the superficial V -velocity and

the interfacial mass transfer due to phase change starts

at gc ¼ 0 and moves upward to the final node in the

liquid region.

From the numerical experiments, it is found that the

overall convergence rate strongly depends on how fast

the solid fraction can converge. Although the solid

fraction can be explicitly determined by the thermal–

solute coupling (Eq. (31)) after the temperature and

concentration fields have been solved, an under-relax-

ation factor must be used to ensure the convergence of

the solid fraction. The prescribed tolerances for the solid

fraction vector are set to be 10�9. The relaxation factor

used for the solid fraction is in the range of 0.05–0.1, and

it takes approximately 200–300 iterations to obtain a

convergent solid fraction. The cause for the retardation

of the convergence rate is found to stem from the energy

source term. Note that this similar problem due to the

energy source term has been reported in [23]. Although a

source term linearization is recommended to improve

the convergence rate, in this model where the solid

fraction is a function of both temperature and
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concentration, the energy source term linearization

yields a further complicated form for the energy equa-

tion, which is numerically unfavorable.

After the solution has converged, three dimensionless

thicknesses, indicating the freeze-coat thickness D1, the

location corresponding to the packing limit fraction Dp,

and the liquid point D2, are determined by the linear

interpolation of the locations where the solid fraction is

equal to zero, the packing limit fraction, and unity, re-

spectively. The algorithm marches along the time-like

coordinate (i.e., n-direction) until the freeze coat reaches
its maximum thickness D1;max corresponding to the axial

location nmax. The solid species concentration within the

freeze-coat layer, which reveals the macrosegregation

pattern, is directly determined from the species equation.

An examination of grid independence of the numer-

ical results is performed for a given set of controlling

parameters for the baseline case (Rk ¼ 1, Rcap ¼ 1,

Rsub ¼ 5, Rsup ¼ 1, Pr ¼ 0:1, Le ¼ 1000, Ste ¼ 0:1, j ¼
0:3, es;p ¼ 0:6, Rk ¼ 0:005, and Rdep ¼ 0:01), for different
values of Dn, Dg, X, and dX=dn. In determining the

maximum freeze-coat thickness, it was found that for

1:56X6 2, Dn less than 0.1% of n, Dgw less than 1/800,

and Dgc less than 1/1600, the numerical solutions are

independent of the grid structure. The relative error in

the computed results (i.e., nmax and D1;max) was found to

be less than 0.2%. On the other hand, in determining the

macrosegregation pattern, it was found that for

206X6 25, Dn less than 1� 10�4, Dgw less than 1/1600,

and Dgc less than 1/3200, the numerical solutions are

independent of the grid structure. The relative error of

wc;min was found to be less than 0.25%. Note that by

investigating the effect of the dX=dn term on the

numerical accuracy, this term can create an artificial

vertical flow, similar to the V -velocity effect. This V -
velocity-like behavior leads to deterioration in the nu-

merical accuracy, especially in the species equation

where diffusion is overpowered by convection. Thus, it

is recommended that dX=dn be set to zero. Detailed

description of the numerical algorithm can be found in

[28].

4. Results and discussion

Comparison of the axial variations of D1, Dp, and D2

predicted by the present model with those reported in

[10,11] for the baseline case is depicted in Fig. 4(a) and

(b). It can be seen from Fig. 4(a) that the variations of

Dp and D2 obtained from all three approaches are

qualitatively the same. Also, the growth-and-decay

behavior of D1 predicted by the present model is similar

to that predicted by Ref. [11]. This growth-and-decay

behavior is due to a limited wall capacity that can be

absorbed by the finite plate from the liquid. In Fig. 4(b),

it can be seen that the value of D1 obtained from the

present model is thicker than that reported in [11]. In

addition, the value of the corresponding location, nmax is

also larger. A physical explanation for an increase of

D1;max is that it is caused by a flow in the transverse di-

rection near the inlet. This vertical flow mixes the local

liquid species concentration with a dilute liquid con-

centration from the far field. As a result, when this

portion of liquid freezes, the value of the solid species

concentration is lower than its values at an equilibrium

state. Based on the equilibrium phase diagram, the sol-

idus temperature is higher compared to the solidus

temperature evaluated at C1, leading to a thicker freeze

coat. The value of nmax also increases due to the fact that

it would take longer time to reach a higher value of

Fig. 4. Axial variations of the dimensionless coating thick-

nesses for the baseline case. Comparison between three different

approaches: (a) for the freeze coat and the two-phase mushy

regions and (b) with emphasis on the freeze coat only.
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D1;max. Thus, the present model provides a more realistic

estimate of the freeze-coat thickness than [11], as the

solute transport was not modeled in [11].

The normalized solid and liquid species concentra-

tions profile obtained by the present model are depicted

in Fig. 5(a). For the freeze-coat region, despite the log-

arithmic scale, it can be seen that the solid species con-

centration is equal to the initial concentration, C1 at

y=d ¼ 0. It decreases to a minimum value, which is ap-

proximately 40% of C1, at y=d ¼ 0:0015. Then, it in-

creases and asymptotically approaches C1 until it

reaches the inner edge of the two-phase mushy region at

y=d ¼ 0:07. The mechanism responsible for this behav-

ior of ws can be explained as follows. In the growth re-

gime, the change of ws in the freeze-coat region is caused

by convection, diffusion, and the species source within a

thin layer, namely the buffer layer, above the freeze coat

itself. This buffer layer is a portion of the two-phase

packing region where the solid fraction is nearly unity,

and this portion is soon to become the freeze coat itself

in the adjacent downstream location. Once this portion

becomes solidified, the value of the solid species con-

centration remains unchanged (unless remelting occurs)

as it moves downstream due to the absence of diffusion,

vertical flow, and the source term in the species equa-

tion. In Fig. 5(a), ws decreases due to the effect of the

vertical flow within the buffer layer. In contrast, ws tends

to increase due to the effect of the species source term.

For solidification near the inlet, the effect of the vertical

flow appears to overpower that of the species source

term, resulting in the lower value of ws as shown in Fig.

5(a). As solidification progresses downstream, the effect

of vertical flow decreases due to the higher value of the

U-velocity compared to the quiescent flow near the inlet.

Hence, ws eventually increases as shown in Fig. 5(a). For

the two-phase mushy region, the solid species concen-

tration decreases toward the outer edge of the two-phase

mushy region. On the other hand, the liquid species

concentration starts at the value of approximately 3.3 at

the inner edge of the two-phase mushy region, decreases

with increasing y=d, and asymptotically approaches C1
to match the boundary condition in the liquid region.

Note that in the two-phase mushy region, the relation

between the solid and liquid species concentrations (Eq.

(4)) holds. Therefore, the change of both concentrations

must be in the same direction. Fig. 5(b) depicts com-

parison between variation of the mixture concentration

along the vertical axis obtained from the present model

and a constant mixture concentration employed in [11]

where the macrosegregation is assumed negligible. It can

be seen that a large deviation of the mixture concen-

tration occurs in the freeze-coat layer near the surface of

the plate. As y=d is increased, the mixture concentration

asymptotically approaches the ambient concentration.

The minimum value of the mixture concentration is

approximately 40% of C1.

The variations of nmax and D1;max with Rsub are de-

picted in Fig. 6(a). The values of nmax and D1;max ob-

tained from the present study are larger than those

obtained from the model developed in [11]. When Rsub is

decreased to approximately four, according to the re-

sults from [11], the freeze coat would no longer form due

to insufficient wall subcooling. However, at the same

value of Rsub, a freeze coat would form according to the

results predicted by the present model. As we have al-

ready discussed, a reduction of the solid species con-

centration due to the suction flow can lead to an increase

in the solidus temperature. As a result, the freeze coat

would be able to form at a higher freezing temperature.

Fig. 5. (a) Normalized solid and liquid species concentration

profiles at the location corresponding to the maximum freeze-

coat thickness and (b) normalized mixture species concentration

profiles: comparison between two different models.
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Fig. 6(b) depicts the variations of ws within the freeze-

coat later at different values of Rsub. As Rsub is increased,

the transverse location corresponding to ws;min increases.

An explanation for this is that the freeze coat is thicker

with increasing Rsub; therefore, the effect of the species

source term, which is a function c, would take place at a

higher value of y=d. In addition, because increasing Rsub

yields a higher cooling condition, the value of c would

increase. Hence, ws would increase and reach a higher

plateau.

The variations of nmax and D1;max with Rk are depicted

in Fig. 7(a). It can be seen that as Rk is increased, nmax

increases because it would take longer time for a low-

conductive material to reach D1;max. When Rk is in-

creased to a certain value, nmax increases and reaches the

maximum value at first. Then, it begins to rapidly de-

crease to zero, and so does D1;max. This implies that the

thermal conductivity of the wall is too low to conduct

enough amount of heat to generate the freeze coat. Note

that nmax and D1;max predicted by the model developed in

this study are larger than those reported in [11] with the

same reason given previously. The effect of Rk on the

species concentration profiles is depicted in Fig. 7(b). As

Rk is decreased, ws;min is located at a higher value of y=d.
Due to the fact that decreasing Rk yields a higher cooling

condition, the behavior of ws with decreasing Rk is

qualitatively similar to that with increasing Rsub as

shown in Fig. 6(b).

Fig. 8(a) depicts the variations of nmax and D1;max with

Rsup. As Rsup is increased, nmax and D1;max decrease be-

cause of higher liquid superheating. By comparing nmax

and D1;max predicted by the present models and those

reported in [11], the former are higher than the latter as

Fig. 6. Effects of the wall subcooling parameter (Rk ¼ 1, Rcap ¼
1, Rsup ¼ 1, Pr ¼ 0:1, Le ¼ 1000, Ste ¼ 0:1, j ¼ 0:3, es;p ¼ 0:6,

Rk ¼ 0:005, and Rdep ¼ 0:01) on (a) the maximum freeze-coat

thickness and the corresponding axial location and (b) the

normalized species concentration of the freeze coat.

Fig. 7. Effects of the freeze-coat-to wall thermal conductivity

ratio (Rsup ¼ 5, Rcap ¼ 1, Rsup ¼ 1, Pr ¼ 0:1, Le ¼ 1000, Ste ¼
0:1, j ¼ 0:3, es;p ¼ 0:6, Rk ¼ 0:005, and Rdep ¼ 0:01) on (a) the

maximum freeze-coat thickness and the corresponding axial

location and (b) the normalized species concentration of the

freeze coat.
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expected. However, when nmax and D1;max get smaller,

there is not much difference between the results obtained

from these two models. The reason is that Rsup has only a

secondary effect on the freeze-coat thickness compared

to Rsub, Rk , and Rcap. In Fig. 8(b), the variation of ws with

decreasing Rsup is qualitatively similar to that with in-

creasing Rsub. Decreasing Rsup leads to a better cooling

condition from the plate to the warm liquid.

The variations of nmax and D1;max with Pr are depicted
in Fig. 9(a). nmax and D1;max increase with decreasing Pr
due to a lower heat transfer coefficient of the flow in the

melt. It should be noted that the difference between nmax

and D1;max predicted by the present model and those

reported in [11] increases as Pr gets smaller. Nonetheless,

the effect of Pr on nmax and D1;max is minor compared to

that of Rsub, Rk , Rcap, and Rsup. The effect of Pr on ws is

depicted in Fig. 9(b). It can be seen that the value of

ws;min is not sensitive to the change of Pr. However, when

ws increases beyond ws;min, the value of ws is lower for

the case of lower Pr. The reason is that in the freeze-coat

region the axial velocity is equal to Uo owing to the

dominance of the Darcy term in the momentum equa-

tion, regardless of Pr. Thus, when Pr gets smaller, the

momentum boundary layer becomes relatively thinner.

Hence, the axial velocity begins decreasing at the inner

edge of the two-phase packing region, and substantially

decreases toward the edge of the momentum boundary

layer. As a result, to satisfy the continuity equation, the

V -velocity increases, causing the lower value of ws. Note

that an asymptotic behavior of the profile of ws as Pr
becomes sufficiently large (Pr > 10) is observed.

Fig. 10(a) depicts the effects of j on nmax and D1;max.

As j is increased, nmax and D1;max increase due to a lower

value of the solid fraction in the mushy region, but the

freeze coat becomes thicker. There is a slight difference

Fig. 8. Effects of the liquid superheating parameter (Rsub ¼ 5,

Rk ¼ 1, Rcap ¼ 1, Pr ¼ 0:1, Le ¼ 1000, Ste ¼ 0:1, j ¼ 0:3, es;p ¼
0:6, Rk ¼ 0:005, and Rdep ¼ 0:01) on (a) the maximum freeze-

coat thickness and the corresponding axial location and (b) the

normalized species concentration of the freeze coat.

Fig. 9. Effects of the Prandtl number (Rsub ¼ 5, Rk ¼ 1,

Rcap ¼ 1, Rsup ¼ 1, Le ¼ 1000, Ste ¼ 0:1, j ¼ 0:3, es;p ¼ 0:6,

Rk ¼ 0:005, and Rdep ¼ 0:01) on (a) the maximum freeze-coat

thickness and the corresponding axial location and (b) the

normalized species concentration of the freeze coat.
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between nmax and D1;max obtained from the present model

and those reported in [11], with higher values for the

latter. The effect of j on ws is depicted in Fig. 10(b).

Interestingly, macrosegregation within the freeze-coat

layer substantially decreases with increasing j. The value
of ws;min also decreases from 0.15 to 0.82 as j is increased

from 0.1 to 0.7. An explanation for this is that from Eq.

(4), the ratio of the solid-to-liquid species concentrations

within the REV is equal to j. As the value of approaches

unity, the difference between the solid and liquid species

concentrations becomes smaller, leading to a smaller

variation of ws during solidification.

The variations of nmax and D1;max with Le obtained by

the present model are depicted in Fig. 11(a). It can be

seen that as Le is decreased, nmax and D1;max marginally

increases. Hence, the effect of Le on nmax and D1;max is

considered minor. A physical explanation for this can be

seen from Figs. 9(a)–11(a), as nmax and D1;max are more

sensitive to the change of Pr than that of Le. The effect of
Le on ws is depicted in Fig. 11(b). There is virtually no

different at the early stage of solidification when ws de-

creases to ws;min. However, beyond ws;min;ws increases

and asymptotically approaches to unity at a faster rate

with increasing Le because the concentration boundary

layer is thinner. In addition, as Le is smaller, the devi-

ation from the asymptotic value of ws becomes larger,

leading to a higher value of the solidus temperature.

Consequently, the values of nmax and D1;max would be

larger as shown in Fig. 11(a). Note that nmax;D1;max, and

the profile of ws appear to approach an asymptotic be-

havior as Le is sufficiently large (Le > 3000).

The effect of Rk on nmax;D1;max and ws is presented in

Table 1. It is clear that nmax;D1;max, and ws are insensitive

to the change of Rk. As Rk is increased from 0.001 to

0.01, nmax and D1;max increase only by 0.06% and 0.2%,

respectively.

Fig. 10. Effects of the equilibrium partition ratio (Rsub ¼ 5,

Rk ¼ 1, Rcap ¼ 1, Rsup ¼ 1, Pr ¼ 0:1, Le ¼ 1000, Ste ¼ 0:1, es;p ¼
0:6, Rk ¼ 0:005, and Rdep ¼ 0:01) on (a) the maximum freeze-

coat thickness and the corresponding axial location and (b) the

normalized species concentration of the freeze coat.

Fig. 11. Effects of the Lewis number (Rsub ¼ 5, Rk ¼ 1, Rcap ¼ 1,

Rsup ¼ 1, Pr ¼ 0:1, Ste ¼ 0:1, j ¼ 0:3, es;p ¼ 0:6, Rk ¼ 0:005, and

Rdep ¼ 0:01) on (a) the maximum freeze-coat thickness and the

corresponding axial location and (b) the normalized species

concentration of the freeze coat.

2324 C. Tangthieng, F.B. Cheung / International Journal of Heat and Mass Transfer 46 (2003) 2313–2327



Fig. 12(a) depicts the effect of Rdep on nmax and D1;max.

As shown in the figure, both nmax and D1;max are weak

functions of Rdep. Note that D1;max appears to be more

sensitive to the change of Rdep than nmax. Physically,

from Eq. (23) the grain density (i.e., the number of

equiaxed particles per unit volume) in the mushy region

is inversely proportional to Rdep cube. Under the same

cooling conditions, if Rdep is larger, the grain density is

substantially reduced, leading to a lower amount of the

solid phase in the mushy region, but a higher freeze-coat

thickness. The variation of ws on Rdep is depicted in Fig.

12(b). As Rdep is increased from 0.001 to 0.03, there is

only a slight difference between the profiles of ws over

this range of Rdep. The effect of Rk on nmax;D1;max and ws

is presented in Table 1. It is clear that nmax;D1;max, and ws

are insensitive to the change of Rk. As Rk is increased

from 0.001 to 0.01, nmax and D1;max increase only by

0.06% and 0.2%, respectively. By comparing Table 1 to

Fig. 12(a), the values of nmax and D1;max are more sensi-

tive to the change of Rdep than that of Rk.

5. Conclusions

A theoretical and numerical study of the process of

freeze coating of a binary substance has been performed.

Based on the numerical results obtained in this study,

the following conclusions can be made:

ii(i) The present model predicts a similar behavior for

the freeze-coat thickness compared to the one re-

ported in [11]. In general, the freeze coat grows at

first, reaching a maximum, and then decays through

remelting as the local wall temperature rises toward

the solidus point. However, only the present model

can bring about the variations of the species con-

centration and macrosegregation of the freeze coat.

i(ii) Macrosegregation could be important in the freeze-

coating process. As the distance from the surface of

the plate is increased, the solid species concentra-

tion considerably decreases, reaching a minimum

value and rising toward the ambient concentration.

A reduction of the solid species concentration is

caused by the vertical flow. In contrast, the species

source term gives an opposite effect on the solid spe-

cies concentration. In the early stage of solidifica-

tion, the effect of the suction flow tends to

dominate that of the source term.

(iii) The macrosegregation pattern is most sensitive to

the equilibrium partition ratio. As the latter is in-

creased, the difference between the solid and liquid

species concentrations tends to decrease, leading

to a substantial reduction of macrosegregation

within the freeze coat. From an optimum-design

point of view, selection of the alloy constituents

or the alloy composition that maximizes the value

of the equilibrium partition ratio, would lead to

the best quality in the final product.

(iv) For a given set of the controlling parameters, the

freeze-coat thickness predicted by the present model

Table 1

Effects of the dendrite-spacing-to-plate-thickness ratio (Rsub ¼ 5,

Rk ¼ 1, Rcap ¼ 1, Rsup ¼ 1, Pr ¼ 0:1, Le ¼ 1000, Ste ¼ 0:1, j ¼
0:3, es;p ¼ 0:6, and Rdep ¼ 0:01) on the maximum freeze coat

thickness and the corresponding axial location

Rk nð1Þ
max Dð1Þ

1;max

0.001 0.349458 0.0616566

0.002 0.349505 0.0616714

0.005 0.349634 0.0617153

0.01 0.349672 0.0617850

Fig. 12. Effects of the depart-diameter-to-plate-thickness ratio

(Rsup ¼ 5, Rk ¼ 1, Rcap ¼ 1, Rsup ¼ 1, Pr ¼ 0:1, Le ¼ 1000,

Ste ¼ 0:1, j ¼ 0:3, es;p ¼ 0:6, and Rk ¼ 0:005) on (a) the maxi-

mum freeze coat thickness and the corresponding axial location

and (b) the normalized species concentration of the freeze coat.
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is slightly larger than that reported in [11] at the

same axial location because of the increasing solidus

temperature due to the flow in the transverse direc-

tion, especially near the inlet.
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